Absorption correction: none 1839 measured reflections
1666 independent reflections
1150 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.026$

Refinement

```
Refinement on \(F^{2}\)
\(R(F)=0.038\)
\(w R\left(F^{2}\right)=0.104\)
\(S=1.111\)
1666 reflections
158 parameters
H atoms treated by a
    mixture of independent
    and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.07 P)^{2}\right]\)
    where \(P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
```

3 standard reflections every 150 reflections intensity decay: 0.40%
$\Delta \rho_{\text {max }}=0.241 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.224 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
Absolute configuration: ascertained from the known configuration of the D -2-deoxyribose substrate
Flack (1983) parameter $=$ 0.3 (17)

Table 1. Hydrogen-bonding geometry ($\AA^{\circ}{ }^{\circ}$)

D-H. \cdot A	D-H	H \cdots A	D... A	D-H. . A
$\mathrm{N} 2-\mathrm{H} 2 \cdots .7^{\prime \prime}$	0.83 (3)	1.93 (3)	2.749 (3)	169 (3)
O8 ${ }^{\prime}-\mathrm{H8}^{\prime} \cdots \mathrm{O}^{\text {il }}$	0.79 (5)	2.12 (5)	2.798 (4)	145 (6)
$\mathrm{O7}^{\prime}-\mathrm{H7}^{\prime} . . . \mathrm{O8}^{\prime \text { iii }}$	0.70 (5)	2.00 (5)	2.693 (3)	168 (5)
C 5 - $\mathrm{H} 5^{\prime} a \cdots \mathrm{O}^{\text {iv }}$	0.97	2.56	3.507 (4)	166

Symmetry codes: (i) $1-x, \frac{1}{2}+y,-z$; (ii) $1-x, y-\frac{1}{2},-z$; (iii) $x, y-1, z$; (iv) $\boldsymbol{Z}-x, \frac{1}{2}+y,-z$.

The $\mathrm{H} 2, \mathrm{H} 7^{\prime}$ and $\mathrm{H} 8^{\prime}$ atoms were refined isotropically. All other H atoms are riding.
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1995). Program(s) used to solve structure: TEXSAN and SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: TEXSAN LS and SHELXL93 (Sheldrick, 1993). Molecular graphics: TEXSAN ORTEP (Johnson, 1965). Software used to prepare material for publication: TEXSAN, SHELXL93 and PLATON (Spek, 1990).

Research support from Southern Illinois UniversityCarbondale via Distinguished Professorship (CYM) and Doctoral Fellowship (YH) funds is gratefully acknowledged. Funding from the University Research Foundation, La Jolla, California, is likewise acknowledged. Thanks are expressed (VMK) for the laboratory assistance provided by Patricia C. Colloton and for research support through the Wisconsin Space Grant Consortium.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1326). Services for accessing these data are described at the back of the journal.

References

Baker, R. J., Timberlake, J. W., Alender, J. T., Majeste, R. \& Trefonas, L. M. (1982). Cryst. Struct. Commun. 11, 763-768.

Belaj, F. (1992). Acta Cryst. C48, 1088-1090.

Birnbaum, G. I., Blonski, W. J. P. \& Hruska, F. E. (1983). Can. J. Chem. 61, 2299-2304.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Glusker, J. P., Lewis, M. \& Rossi, M. (1994). Crystal Structure Analysis for Chemists and Biologists, pp. 632-634. New York: VCH.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kolb, V. M., Colloton, P. A., Robinson, P. D., Lutfi, H. G. \& Meyers, C. Y. (1996). Acta Cryst. C52, 1781-1784.

Meyers, C. Y., Lutfi, H. G., Hou, Y.-Q. \& Robinson, P. D. (1995). American Chemical Society, National Meeting, Chicago, August 20-24. Abstract No. ORGN 296.
Meyers, C. Y., Lutfi, H. G., Hou, Y.-Q. \& Robinson, P. D. (1997). Acta Cryst. C53, 98-100.
Meyers, C. Y., Lutfi, H. G., Kolb, V. M. \& Robinson, P. D. (1994). Acta Cryst. C50, 1925-1928.
Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7-1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1996). MSCIAFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Robinson, P. D., Kolb, V. M., Colloton, P. A. \& Meyers, C. Y. (1997). Acta Cryst. C53, IUC9700003.
Robinson, P. D., Meyers, C. Y., Kolb, V. M. \& Colloton, P. A. (1996). Acta Cryst. C52, 1215-1218.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Tenon, J. A., Carles, M. \& Aycard, J.-P. (1995). Acta Cryst. C51, 1440-1442.

Acta Cryst. (1997). C53, 1505-1508

Quininium (S)-Mandelate \dagger

Anne B. Geerløv and Sine Larsen
Centre for Crystallographic Studies, University of
Copenhagen, Universitetsparken 5, DK-2100 Copenhagen,
Denmark.E-mail: sine@xray.ki.ku.dk

(Received 26 November 1996; accepted 22 April I997)

Abstract

The structure of the title compound, $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}$.$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}^{-}$, at $122(1) \mathrm{K}$ has been compared to those of the closely related cinchonidinium mandelate salts [Gjerløv \& Larsen (1997). Acta Cryst. B53, 708-718]. The hydrogen-bonding arrangement of infinite chains of alternating anions and cations is identical to the hydrogen-bonding pattern seen in the diastereomeric mandelate salts of cinchonidine. Likewise, the herring-

[^0]bone stacking of the quinoline ring systems of the cations resembles the packing pattern observed in other salts of the cinchona alkaloids and in the free bases.

Comment

The optical resolution of racemates is often achieved through the formation of diastereomeric salts. Quinine and mandelic acid are commonly used as resolving agents for racemic acids and bases, respectively. The structure of the title compound, (I), has been investigated to gain insight into the chiral discrimination that takes place on formation of diastereomeric salts. The structure is compared to those of the mandelate salts of cinchonidine, a related cinchona alkaloid, which have been investigated earlier (Gjerløv \& Larsen, 1997). As shown in the scheme below, quinine and cinchonidine differ only in the substituent at the C 12 position. The H atom in cinchonidine is replaced by a methoxy group in quinine.

Quinine: $X=\mathrm{OCH}_{3}$ Cinchonidine: $X=H$

Apart from the obvious differences related to the methoxy group, the quininium cation, shown in Fig. 1, is almost identical to the cations found in the cinchonidinium mandelate salts (Gjerløv \& Larsen, 1997). The most significant difference is a slight change in the O 4 $\mathrm{C} 18-\mathrm{C} 19-\mathrm{N} 2$ torsion angle from -80 to -84°. This has the effect of moving the two hydrogen-bond donors further away from each other. A more skewed conformation of the quinuclidine system is also observed. In line with the stereochemical characterization employed by Oleksyn, Lebioda \& Ciechanowicz-Rutkowska (1979) for cinchonine, the torsion angles about the N2-C21 line are suitable to illustrate differences in conformation. In the quininium salt, they deviate more from the idealized 0 and 120°. The torsion angle C24-C25$\mathrm{C} 26-\mathrm{C} 27$ describes the orientation of the vinyl group,
which is the most flexible part of the cation. The value of $114.2(2)^{\circ}$ is close to the most frequently observed value of around 120° (Gjerløv \& Larsen, 1997). The geometry of the quininium ion compares well with the structures of the cinchonidinium cation observed in the two diastereomeric mandelate salts.

Fig. 1. Molecular structure of the mandelate anion (top) and the quininium cation (bottom) showing 50% probability displacement ellipsoids for the non-H atoms. The H atoms are shown as spheres of fixed radii.

The conformation of the anion shown in Fig. 1 is described by the two torsion angles $\mathrm{Ol}-\mathrm{Cl}$ $\mathrm{C} 2-\mathrm{O} 3$ and $\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$; the values for these angles in quininium (S)-mandelate are -5.13 (15) and $-166.93(10)^{\circ}$, respectively. They are within the range of values found in a previous study of the geometry of the mandelate anion in 23 mandelate structures (Larsen \& Lopez de Diego, 1993). The intramolecular hydrogen bond $\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O} 1$ observed in the present structure is also observed in 13 of the 23 structures.

In the cinchonidinium mandelate structures, an elongation is observed of the $\mathrm{C}-\mathrm{O}$ bond of the carboxylate group which involves the O atom that is hydrogen bonded to the positively charged cation. We do not observe the same trend in the present structure. This variation could be caused by an increased strength of the
intramolecular hydrogen bond $\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{Ol}$, as reflected in the shorter O3...O1 distance of 2.5857 (12) \AA (Table 2). This distance is 2.592 (2) \AA in cinchonidinium (S)-mandelate, and 2.597 (2) and 2.640 (2) \AA in the two independent anions of cinchonidinium (R)-mandelate. In the latter anion, the $\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$ moiety deviates most from planarity. Also, the two intermolecular hydrogen bonds are slightly shorter than the average values found in the cinchonidinium salts.
The packing of the molecules resembles the packing found in the cinchonidinium mandelates, with infinite hydrogen-bonded chains of alternating anions and cations formed along the shortest crystallographic axis, of $c a 6.4 \AA$ (Fig. 2). The quinoline moieties adopt the same herring-bone pattern as was found in the cinchonidinium salts, the interplanar angle being 62°, calculated using PLATON (Spek, 1990). Considering the similarity between quinine and cinchonidine, one would have expected a similarity between the packing of the (S)mandelate salts of quinine and cinchonidine. In contrast, we find that the packing arrangement in quininium (S)-mandelate resembles more the packing in cinchonidinium (R)-mandelate. In these two salts, the anions pack in a head-to-tail arrangement in the direction of a ca $12 \AA$ axis, as seen in Fig. 2. The only difference is that the direction of the head-to-tail arrangement is reversed due to the opposite chirality of the ions.

Fig. 2. Stereoscopic view of the crystal packing viewed along the a axis, showing the infinite hydrogen-bonded chains of alternating anions and cations. Hydrogen bonds are represented as thin lines. The b axis is horizontal and the c axis is vertical.

The packing of cinchonidinium (S)-mandelate is more dense; in this structure, the anions form a herring-bone stacking of the phenyl groups. Apart from the substituent at C12, which is a methoxy group in quinine and a hydrogen in cinchonidine, quininium (S)-mandelate is identical to cinchonidinium (S)-mandelate. The methoxy group causes the cations to move further apart in the direction of the $12.5 \AA$ axis maintaining the herring-bone packing of the cations. The anions have adapted to the more spacious arrangement of the cations by replac-
ing the more dense head-to-head herring-bone stacking of the phenyl groups in cinchonidinium (S)-mandelate by a less dense head-to-tail packing in quininium (S)mandelate. The herring-bone stacking of the cations is also found in the structure of quininium salicylate monohydrate (Oleksyn \& Serda, 1993), though the cations and anions form discrete hydrogen-bonded ion pairs in this compound.

Experimental

Equimolar amounts of quinine and (S)-mandelic acid were dissolved in methanol. Diffraction quality crystals were formed within a few hours.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}^{+} . \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}^{-}$
$M_{r}=476.56$
Orthorhombic
$P 2,2$, 21
$a=6.5362(6) \AA$
$b=12.4737(12) \AA$
$c=32.056$ (3) A
$V=2613.5(4) \AA^{3}$
$Z=4$
$D_{x}=1.211 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
6294 measured reflections
5290 independent reflections
5055 reflections with
$\quad I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.071$
$S=1.059$
5290 reflections
413 parameters
Only coordinates of H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0396 P)^{2}\right.$
$+0.3863 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.043$
$R_{\text {int }}=0.008$
$\theta_{\text {max }}=74.91^{\circ}$
$h=0 \rightarrow 8$
$k=0 \rightarrow 15$
$l=-39 \rightarrow 40$
3 standard reflections frequency: 166.7 min intensity decay: 3.7%
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54184 \AA$
Cell parameters from 18 . reflections
$\theta=38.13-46.79^{\circ}$
$\mu=0.674 \mathrm{~mm}^{-1}$
$T=122$ (1) K
Needle
$0.4 \times 0.1 \times 0.1 \mathrm{~mm}$
Colourless
$\Delta \rho_{\text {max }}=0.213 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.207 \mathrm{e}^{-3}$
Extinction correction:
SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0035 (2)

Scattering factors from International Tables for
Crystallography (Vol. C)
Absolute configuration:
Flack (1983)
Flack parameter $=0.08$ (11)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{O} 1-\mathrm{Cl}$	$1.2533(15)$	$\mathrm{C} 9-\mathrm{Cl} 7$	$1.371(2)$
$\mathrm{O} 2-\mathrm{Cl}$	$1.2486(15)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.425(2)$
$\mathrm{O} 3-\mathrm{C} 2$	$1.4199(14)$	$\mathrm{C} 9-\mathrm{C} 18$	$1.5254(15)$
$\mathrm{Cl}-\mathrm{C} 2$	$1.541(2)$	$\mathrm{C} 10-\mathrm{C} 15$	$1.4239(14)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.517(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.428(2)$
$\mathrm{C} 3-\mathrm{C} 8$	$1.393(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.374(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.394(2)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.419(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.388(2)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.359(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.390(2)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.417(2)$

C6-C7	1.384 (2)	C16-C17	1.411 (2)
C7-C8	1.393 (2)	C18-C19	1.5465 (15)
O4-C18	1.4162 (13)	C19-C20	1.5424 (15)
O5-C12	1.3614 (15)	$\mathrm{C} 20-\mathrm{C} 21$	1.537 (2)
O5-C28	1.4290 (15)	$\mathrm{C} 21-\mathrm{C} 22$	1.530 (2)
N1-C16	1.316 (2)	$\mathrm{C} 21-\mathrm{C} 25$	1.541 (2)
N1-C15	1.370 (2)	$\mathrm{C} 22-\mathrm{C} 23$	1.533 (2)
N2-C24	1.5005 (15)	C24-C25	1.544 (2)
N2-C23	1.5060 (14)	C25-C26	1.498 (2)
N2-C19	1.5065 (13)	C26-C27	1.317 (2)
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{O} 3$	68.49 (7)	$\mathrm{O}-\mathrm{C} 12-\mathrm{Cl1}$	125.67 (10)
$\mathrm{C} 2-\mathrm{O} 3-\mathrm{O} 1$	65.38 (6)	$\mathrm{O} 5-\mathrm{Cl2-Cl3}$	113.37 (11)
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O} 1$	126.86 (11)	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C13}$	120.96 (11)
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{C} 2$	117.08 (11)	$\mathrm{C} 14-\mathrm{Cl} 3-\mathrm{Cl} 2$	120.00 (11)
$\mathrm{O1}-\mathrm{C} 1-\mathrm{C} 2$	116.06 (10)	$\mathrm{C} 13-\mathrm{Cl} 4-\mathrm{Cl5}$	121.13 (11)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	112.05 (10)	$\mathrm{N} 1-\mathrm{Cl5-C} 14$	117.54 (10)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	109.89 (10)	$\mathrm{Nl}-\mathrm{Cl5-Cl0}$	123.36 (11)
C3-C2-C1	110.28 (9)	$\mathrm{C} 14-\mathrm{Cl5}-\mathrm{C} 10$	119.11 (11)
C8-C3-C4	119.19 (12)	N1-C16-C17	124.19 (11)
C8-C3-C2	120.95 (12)	C9-C17-C16	119.79 (11)
C4-C3-C2	119.86 (11)	O4-C18-C9	111.27 (9)
C5-C4-C3	120.70 (12)	O4-C18-C19	109.95 (9)
C4-C5-C6	119.83 (14)	C9-C18-C19	107.44 (8)
C7-C6-C5	119.80 (13)	$\mathrm{N} 2-\mathrm{C} 19-\mathrm{C} 20$	107.73 (9)
C6-C7-C8	120.54 (13)	N2-C19-C18	111.80 (8)
C7-C8-C3	119.93 (13)	$\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 18$	114.50 (9)
C12-O5-C28	116.98 (9)	$\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 19$	110.02 (9)
C16-N1-C15	116.95 (10)	$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 20$	109.38 (9)
C24-N2-C23	109.30 (9)	$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 25$	107.53 (10)
C24-N2-C19	108.85 (8)	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 25$	110.43 (9)
C23-N2-C19	113.06 (9)	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	109.09 (9)
C17-C9-C10	118.36 (10)	$\mathrm{N} 2-\mathrm{C} 23-\mathrm{C} 22$	108.89 (9)
C17-C9-C18	120.09 (10)	$\mathrm{N} 2-\mathrm{C} 24-\mathrm{C} 25$	110.00 (9)
C10-C9-C18	121.50 (10)	C26-C25-C21	113.58 (11)
C15-C10-C9	117.30 (10)	$\mathrm{C} 26-\mathrm{C} 25-\mathrm{C} 24$	111.66 (10)
C15-C10-C11	119.04 (10)	C21-C25-C24	107.24 (9)
C9-C10-C11	123.67 (10)	C27-C26-C25	124.2 (2)
$\mathrm{C} 12-\mathrm{Cl1}-\mathrm{Cl} 0$	119.73 (10)		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	-5.13 (15)	$\mathrm{C} 25-\mathrm{C} 21-\mathrm{N} 2-\mathrm{C} 24$	7.11 (8)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C}$	118.87 (12)	$\mathrm{C} 25-\mathrm{C} 21-\mathrm{N} 2-\mathrm{C} 19$	125.10 (8)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	70.32 (14)	$\mathrm{C} 25-\mathrm{C} 21-\mathrm{N} 2-\mathrm{C} 23$	-112.06(8)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-166.93 (10)	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{N} 2-\mathrm{C} 19$	3.54 (7)
C10-C9-C18-O4	159.14 (10)	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{N} 2-\mathrm{C} 23$	126.38 (9)
C17-C9-C18-O4	-23.61 (14)	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{N} 2-\mathrm{C} 24$	-114.45 (9)
C17-C9-C18-C19	96.79 (12)	$\mathrm{C} 22-\mathrm{C} 21-\mathrm{N} 2-\mathrm{C} 23$	5.67 (8)
C10-C9-C18-C19	-80.45 (12)	$\mathrm{C} 22-\mathrm{C} 21-\mathrm{N} 2-\mathrm{C} 24$	124.84 (9)
C9-C18-C19-N2	154.64 (9)	$\mathrm{C} 22-\mathrm{C} 21-\mathrm{N} 2-\mathrm{C} 19$	-117.17 (9)
C9-C18-C19-C20	-82.49 (11)	$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 27$	114.2 (2)
$\mathrm{O} 4-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	38.75 (11)	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 5-\mathrm{C} 28$	-3.1 (2)
O4-C18-C19-N2	-84.12 (11)		

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-H \cdots A$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{Ol}^{\prime}$	$1.72(2)$	$2.6711(12)$	$174(1)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~N} \cdots 2^{i i}$	$1.70(2)$	$2.6239(13)$	$167(2)$
$\mathrm{O} 3 — \mathrm{H} 3 \mathrm{O} \cdots \mathrm{Ol}$	$1.94(2)$	$2.5857(12)$	$129(1)$

Symmetry codes: (i) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.
All H atoms were located in difference Fourier calculations after refinement of the non- H atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: DREADD (Blessing, 1987). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

We thank Mr Flemming Hansen for technical assistance with the data collection. This work was supported by a grant from The Danish Natural Science Research Council.

[^1]Supplementary data for this paper are available from the IUCr electronic archives (Reference: SX1027). Services for accessing these data are described at the back of the journal.

References
Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA
Gjerløv, A. \& Larsen, S. (1997). Acta Cryst. B53, 708-718.
Larsen, S. \& Lopez de Diego, H. (1993). Acta Cryst. B49, 303-309.
Oleksyn, B., Lebioda, L. \& Ciechanowicz-Rutkowska, M. (1979). Acta Cryst. B35, 440-444.
Oleksyn, B. J. \& Serda, P. (1993). Acta Cryst. B49, 530-535.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek. A. L. (1990). Acta Cryst. A46, C-34.
Acta Cryst. (1997). C53, 1508-1510
\section*{6α-Hydroxyvouacapan- $7 \beta, 17 \beta$-lactone \dagger}
Odonirio Abrahão-Junior, ${ }^{a}$ Maria Teresa do P. Gambardella, ${ }^{a}$ Silvana Gulardi Ruggiero, ${ }^{\text {b }}$ Tania Marcia Sacramento, ${ }^{c}$ Guglelmo Marconi Stefani ${ }^{c}$ and Dorila Pilo-Veloso ${ }^{c}$
${ }^{a}$ Instituto de Quimica de São Carlos, Universidade de São Paulo, Caixa Postal 870, 13560.970, São Carlos, SP, Brazil,
${ }^{b}$ Departamento de Quimica - Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG, Brazil, and 'Departamento de Quimica - ICEX, Universidade Federal de Minas Gerais, Caixa Postal 702, 3I270-90I, Belo Horizonte, MG, Brazil. E-mail: dodo@iqsc. sc.usp.br

(Received 8 November 1996; accepted 22 April 1997)

Abstract

In the crystal structure of the title compound, $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$, adjacent molecules are linked through hydrogen bonds in an infinite chain structure in the [100] direction.
\dagger Alternative name: 4b,6a,7,7a,8,9,10,11,11a,11b,11c,12-dodecahydro-7-hydroxy-8,8.11a-trimethylphenanthro[3,2-b;10.10a,1-bc]difuran-5(5H)one.

Comment

6α-Hydroxyvouacapan- $7 \beta, 17 \beta$-lactone (HVL) is a synthetic derivative of $6 \alpha, 7 \beta$-dihydroxyvouacapan- 17β-oic acid (ADV), which was isolated from the fruits of Pterodon polygalaeflorus Benth, as reported by Mahajan \& Monteiro (1973). Both compounds showed anti-

[^0]: \dagger Alternative name: 6^{\prime}-methoxycinchonidin-1-ium α-hydroxybenzeneacetate.

[^1]: © 1997 International Union of Crystallography
 Printed in Great Britain - all rights reserved

